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TECHNICAL NOTE 3716

COMPARISON OF EXPERIMENTAL AND THEORETTICAI, NORMAL-FORCE
DISTRIBUTIONS (INCLUDING REYNOIDS NUMBER EFFECTS)
ON AN OGIVE-CYLINDER BODY AT MACH NUMBER 1.98%

By Edward W. Perkins and Ieland H. Jorgensen
SUMMARY

Normel-force and pressure distributions have been determined for a
body of revolution consisting of a fineness-ratio-3, circular-arc, ogival
nose tangent to a cylindrical afterbody 7 diameters long. The free-
stream Mach number was 1.98; the angle-of-sttack range was from O° to
20: 3 aggt the Reynolds numbers, based on body diameter, were 0.15x10° and
0.45x10°.

Comparisons of experimental and theoretical distributions of pressure
® and normal-force coefficients indicate that availgble theoretical methods
can be expected to predict experimental results with good accuracy for
angles of attack only to about 5°. The zero-1ift pressure distribution
is adequately predicted by Van Dyke's second-order theory.)-_

The normal-force distributions differ significantly from those cal-
culated in accordance with theories which include methods of estimating
the effects of viscosity on the forces and moments for inclined bodies.
Anslysis of the data shows that these differences are, in general, attrib-
utable to inadequate estimates of the magnitude and distribution of the
cross forces resulting from flow separation. Resulis of the tests at
different Reynolds numbers show that, insofar as the viscous cross-force
distribution on an inclined body is concerned, the boundary-layer flow in
the axial and crossflow directions cannot always be considered independent.

INTRODUCTION

The design of missiles and alrplanes for operation at very high
speeds, coupled with the requirement of good maneuverability, has led to
the use of configurations in which the serodynamic characteristics of the

iSupersedes NACA RM ASYH23 by Edward W. Perkins and Leland H.
Jorgensen, 1954,




2 NACA TN 3716

bodies are important. Although several theoretical methods based upon
potential-flow concepts are available for predicting the characteristics
of bodies, the angle-of-attack range for which these theories yield satis-
factory results is known to be very limited because of the effects of
viscosity. An approximate theory based upon the idea that the effects of
viscosity on the forces end moments for high fineness ratio bodies of
revolution can be estimated by treating each cross section of the body as
an element of an infinitely long circular cylinder was proposed by Allen
in reference 1. Although the actual flow about an inclined body was
known to be more complex than that assumed as the basis for this method,
it has been shown that for many cases, the method can be used to prediect
satisfactorily the forces for high fineness ratio bodies (ref. 2). How-
ever, because of the assumptions involved in the development of the
method, satisfactory estimates of the aerodynamic characteristics of low
fineness ratio bodies cannot be expected. Furthermore, Reynolds number
effects on the forces and moments are only qualitatively predicted with
this method.

Studies of the flow about inclined bodies by means of the vapor-
screen technique (ref. 2) have shown that there is a similarity between
the axial development of the crossflow about an inclined body and the
development with time of the flow about a circular cylinder impulsively
set in motion from rest. Based upon this observation, it was suggested
in reference 2 that the axial distribution of the crossflow drag for an
inclined body mey be similar to the time-dependent drag of the circular
cylinder impulsively set in motion from rest. Employing this concept,
Kelly (ref. 3) showed thet some improvement in the estimation of the
force characteristics for low fineness ratio bodies can be obtained. How-
ever, this approach yields umsatisfactory predictions for high fineness
ratio bodies at large angles of attack. ’

Because of the lack of experimental data on the load distributions
for inclined bodies, it is generally impossible to determine a priori
the reasons for failure of either Allen's or Kelly's method in any partic-
ular case. It was the purpose of the present investigation to determine
experimentally the normal-force distributions on an inclined body and to
compare these distributions with those computed with the methods proposed
in references 1 and 3. The results of these comparisons are presented in
this report and are used to indicate the conditions for which the proposed
methods may be expected to yield satisfactory estimates of the over-all
forces and moments and those for which serious errors in the force pre-
dictions may result.

The scope of the present investigation is limited in that detailed
force-distribution data for only one body were obtained for analysis.
Nevertheless, it is felt that the results are generally indicative of the
conditions which might exist for a wide variety of cases. Since it was
necessary to obtain pressure-distribution data in order to determine the

-
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.force distributions, pressure distributions are also presented and com-
pared with the predictions of potential theories.

SYMBOLS

7d2
A reference area, ——

h
cdc local crossflow drag coefficient based on diameter

cdc' crossfloy drag coefficient of & circular cylinder per unit
length in terms of its diameter for steady-state flow

Cn pitching-moment coefficient about nose of the model,

1
M__l_f
—docnxdx

7

Cn local normal-force coefficient per im., % f Cp cos 0 46
(o]
1
Cy total normal-force coefficient, f cp dx
(o]

Cp pressure coefficient, - P
4 maximum body diameter

1 body length

In axial distance from vertex to station at which local normal force
by "hybrid" or Tsien's theory is a minimum

in length of ogival nose
M pitching moment
* My free-stream Mach number
Mo crossflow Mach number, M, sin o
P local static pressure on model surface

Po free-stream static pressure
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d5 free-stream dynamic pressure

Re free-stream Reynolds number per inch

Req crossflow Reynolds number based on body diameter (Re d sin a)

X,r,0 model cylindrical coordinates, origin at the vertex (6 = 0° in
the vertical plane of symmetry on the windward side)

Xm moment center location measured from vertex
Xp center-of-pressure location measured from vertex
o angle of attack
Subscripts
P potential-flow component
v viscous-flow component

APPARATUS AND TESTS

Tunnel

The experimental investigetion was conducted in the Ames 1- by 3-
foot supersonic wind tunnel No. 1. This tunnel is a closed-circuit
variable-pressure tunnel in which the Reynolds number is changed by vary-
ing the total pressure within the approximate limits of one-fifth of an
atmosphere to two atmospheres. Mach numbers between 1.2 and 2.5 are
obtained by adjustment of the upper and lower flexible steel plates of
the nozzle.

Model

The model tested had & fineness-ratio-3 tangent ogive nose with a
cylindrical afterbody. A single row of 23 orifices extended longitudi-
nally over both nose and afterbody. The model, which was constructed of
steel, was sting supported from the rear and could be rotated 360° about
its longitudinal axis by a mechanism operated from outside the tunnel.
Pertinent model dimensions and orifice locations are presented in
figure 1.



NACA TN 3716 5

Tests

The pressure-distribution data were obtained for a Mach number of
1.98. The model was tested at angles of attack of 0°, 5°, 10°, 15°, and
20° for a free-stream Reynolds number of 0.39x108 per inch.and at angles
of attack of 10° and 15° for a free-stream Reynolds number of 0.13x10°
per inch (Reynolds mumbers of 0.45x10%® and 0.15x10® based on body diem-
eter). At each angle of attack, circumPerential pressure distributions
were obtained by rotating the model through the desired range of circum-
Perential angles (@) in inerements of 15° or less. All pressures were
photographically recorded from a multiple-tube manometer system.

Since the pressure-distribution data were obtained from a single
longitudinal row of orifices by rotating the model so that the orifices
were in the desired plane, & check was made to determine if hysteresis
effects resulted from this testing method. Comparisons of the pressure
distributions (fig. 2) show that, even though there were small asymme-
tries In the flow, there were no effects of hysteresis due to model
rotation.

In addition to the hysteresis check, a repeat run for a« = 15° and
Re = O.39xl06 per inch was made at a later date. A comparison of the
pressure-distribution data from this run with the data from the "hyster-
esis run” (fig. 2) indicates that the pressure distributions can be
repeated with good accuracy except, as expected, near the positions of
flow separation.

To help assess the effects of Reynolds number and transition from
laminar to turbulent flow on the pressure and normel-force distributions,
the model was slso tested at 0°, 15°, and 20° angles of attack with a
turbulence-producing grid mounted upstream of the wind-tumnel throat at
about the 0.5 Mach number position. From schlieren pictures of the
model at 0° angle of attack, it was found that for a free-stream Reynolds
nupber of 0.39x106 per inch, use of the turbulence grid resulted in
forward movement of the transition position from 7.5 body diameters to
6 body diameters from the vertex.

REDUCTION OF DATA

All the data have been reduced to pressure-coefficient form and have
been corrected for the effects of the small nonuniformities in the wind-
tunnel flow. The corrected pressure coefficients are listed in table I,
For the model at zero angle of attack, an average value of Cp 1is
listed for each x/d. station, since the variation of Cp around the
body was less than #0.002. )

e o
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For the model at angle of attack, local normel-force coefficients
(cn) were obtained by integrating the pressure coefficients around half
of the body. Although some of the pressure distributions were slightly
asymmetric, it was found that negligible error in cp resulted from the
assumption of symmetrical flow. The local normal-force data were then
graphically integrated to obtain total normal-force and pitching-moment
coefficients.

The uncertainty of the experimental data was estimated by consider-
ing the possible errors in the individual measurements (including correc-
tions) used in the calculation of the final results. The uncertainty of
a quantity was taken as the square root of the sum of the squares of the
possible errors in the individual measurements. The resulting uncertain-
ties in the final quantities are as follows:

Quantity Uncertainty
Cp +0.005
Cn .00k
Cy +.008
Cm *.055
o %,1°

Except near the regions of flow separation, the computed uncertainty
in Cp appears to be consistent with the repeatability of the data. (See,

e.g., fig. 2.)

RESULTS AND DISCUSSION

Pressure Distributions

Comparison of theoretical and experimental pressure distributions.-
Most of the comparisons of the theoreticel pressure distributions with
the experimental data which are made in the figures of this report are
for a Reynolds number of 0.39><lds per inch. Comparisons at a single
Reynolds number are considered sufficient since, for. zero angle of attack,
the Reynolds number effects are negligible, and for angle of attack, vary-
ing the Reynolds number alters the details of the pressure distributions
but does not significantly change the agreement with theory.

Theoretical pressure distributions at zero angle of attack, calcu-
lated with four different methods (refs. 4, 5, and 6) are compared with
the experimental results in figure 3. Except near the vertex, -the pres-
sure distributions predicted with the various theories do not differ
appreciably and are in good agreement with experiment. Of the three
theoreticel methods which yield satisfactory agreement over.the full
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length of the nose, that is, the method of characteristics, Van Dyke's
second-order theory, and the method of Bolton-Shew and Zienkiewicz, the
last (ref. 5) is by far the simplest to use.

Of the several theoretical methods available for calculating the
pressure distributions on inclined bodies of revolution, two have been
chosen for comparison with the experimental resulis. These are the famil-
iar first-order theory and the so-called "hybrid” theory of reference 7.2
This latter method combines a first-order crossflow solution with a
second-order axial-flow solution. The theoretical pressure distributions
along meridian lines (@ = constant), computed with hybrid theory, are
compared with the experimental distributions for angles of attack of 5°

°, 15°, and 20° in figure 4. The distributions obtsined with first-
order theory are shown only for o = 10° since, except near the vertex,
there is little difference between the results of first-order theory and
hybrid theory. For all angles of attack and for most values of 6, the
hybrid theory predicts too large a value of the pressure coefficient at
the vertex of the model. Good agreement of theory with experiment over
most of the body is obtained only at 5° angle of attack, the differences
between theory and experiment becoming progressively greater as the angle
of attack is increased. Because of the excellent agreement between
second~order theory and experiment at zero angle of attack, the failure
of the hybrid theory, even for moderate angles of attack, is probably
attributable to inaccuracies inherent in the first-order crossflow contri-
bution. Flow separation, which occurs at all but the lowest angle of
attack, is the principal cause of the poor agreement over the leeward side
of the cylindrical afterbody.

Effects of angle of attack on the pressure distributions.- In order
to show more clearly the effects of angle of attack on the variation of
pressure coefficient around the body, circumferential pressure distribu-
tions for six axial stations are presented in figure 5. At all angles of
attack above 5°, effects of crossflow separation are indicated. As the
angle of attack increases from 50 to 10°, a separated flow region is
formed aft on the lee side of the body. With further increase in angle
of attack, the separated flow region moves forward and also progresses
toward the windward side of the body until it encompasses almost the
entire lee side at 20° angle of attack. On the lee side of the body, in
this separated flow region, secondary flow effects associated with the
body vortices are also observed. (See, e.g., fig. 5(c) at a=20° and

6®150°.) There is also evidence of slight flow asymmetry on the lee side
of the body.

Reynolds number effects on the pressure distributions.- The effects
of Reynolds number on the pressure distributions result principally from
the changes in the boundary-layer-separation characteristics and thus

2Tn the application of both theories, the exact pressure relation-
ghip for isentropic flow has heen used.
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depend primarily on whether the boundary layer is laminar or turbulent.
Since an increase in the turbulence level of an air stream is known to
induce effects which are qualitatively similar to those resulting from
an increase in Reynolds number, an effectively high Reynolds number was
achieved by purposely increasing the free-stream turbulence and testing
at the highest practicable tunnel total pressure. The pressure distri-
butions obtained under these conditions, combined with the data obtained
at low tunnel pressures in the absence of the turbulence grid, provide a
fairly wide range of effective Reynolds numbers.

The date of figure 6 illustrate the Reynolds number or boundary-
layer transition effects on the pressure distributions for the body of
the present investigation. The data have been plotted for six stations
along the length of the body and for angles of attack of 10°, 15°, and
20°. Ilarge Reynolds number effects are evidenced.only by the data for
10° angle of attack. For the higher angles of'attack, 15° and 20°,
Reynolds number effects are present but they are much less pronounced.

The changes in the pressure distributions on the cylindrical after-
body which accompany the increase in Reynolds number at 10° angle of
attack (fig. 6(a)) are qualitatively the same as those which result from
boundary-layer transition on & circular cylinder. For a circular cylin-
der, when boundary-layer transition occurs ahead of the point at which
laminar separation would usually occur, the separation point moves toward
the lee side of the cylinder and the pressure recovery on the lee side
increases. On the cylindrical afterbody of the model of the present
investigation, the increase in Reynolds number from 0.13x10%® per inch to
0.39%X10° per inch is accompanied by a movement of the flow separation
point toward the lee side of the body and an increase in the lee side
pressure recovery. From these data it is inferred that for Re = O.39><106
at a= lO°, boundary-layer transition occurred on the inclined body near
the juncture of the nose with the cylindrical afterbody.

Normal-~Force Distributions

Comparison with potential theory.- Normal-force distributions for
angles of attack of 5°, 10°, 15°, and 20° for a Reynolds number of 0.39xlds
per inch are presented in figure 7. The experimental data have been reduced
to the form of local normal-force coefficient per inch per unit angle of
attack for convenient comparison with the theoretical distributions cal-
culated with slender-body theory, Tsien's linearized theory and Van Dyke's
hybrid theoryS (refs. 8, 9, and 7, respectively). The inadequacy of the

SAlthough the theoretical normal force calculated with Van Dyke's
hybrid theory is not strictly a linear function of the angle of attack,
for this particular combination of body shape and Mach number, the depar-
ture from linearity is negligibly small for the angle-of-attack range of
this investigation.
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potential-flow theories at all but very low angles of attack is clearly
demonstrated by theése comparisons. Even at 5° angle of attack it is evi-
dent that, although both Tsien's and Van Dyke's methods predict the gen-
eral shape of the load distribution curve, the 1lift carried on the cylin-
drical afterbody is considerably greater than calculated. At higher
angles of attack the largest part of the difference between.theory and
experiment is attributable to separation effects.

Comparison with methods of Allen and Kelly.- In the absence of a
rigorous theory for calculating the effects of flow separation on the
forces and moments of inclined bodies, methods of estimating these effects
have been suggested by Allen (ref. 1) and Kelly (ref. 3). Although both
methods rely upon the same concept, that is, that the viscous crossflow
around an inclined body of revolution is analogous to the flow around a
circular cylinder normal to the air stream, the methods differ in their
subsequent development. In Allen's method it is assumed that the local
viscous cross force depends only upon the component of flow normal to the
inclined axis of the body. Therefore, no interaction between the axisl
and crossflow boundary layers 1s anticipated. The local viscous cross-
flow drag coefficient is assumed constant along the body and is taken as
equal to the drag coefficient of a circular cylinder of the same fineness
retio as the inclined body and at the same crossflow Mach number and
Reynolds number.

Two modifications to Allen's method ere suggested by Kelly (ref. 3).
First, it is assumed that the viscous crossflow and axial flow are not
independent. Thus, if the boundary-layer flow on the body is turbulent
for any reason whatsoever, the appropriate crossflow drag coefficient is
the low value associated with turbulent boundary-layer flow, even though
the crossflow Reynolds number might be in the range for which & laminar
crossflow boundary layer would be expected. (Kelly does not consider
cases for which the boundary-layer flow is partly laminar and partly tur-
bulent.) The second modification is that, at any angle of attack, the
crossflow drag coefficient should not be constant along the length of the
body but should reflect the transient effects noted by Schwabe (ref. 10)
for a circular cylinder impulsively set in motion from rest. Schwabels
data show that the drag coefficient starts at zero at zero time and
increases with distance traveled, until a maximum value of approximately
2.07 is reached after the cylinder hes traveled about 4.5 diameters.
Thus, based on the assumption that the crossflow drag coefficients of a
circuler cylinder and an inclined body would be equal for equal distances
traveled in the respective crossflow plenés, the axial variation for an
inclined body was related to the variation with distance traveled of the
drag coefficient of a circular cylinder.

Although both Allents and Kelly's methods have been shown to yleld

satisfactory predictions of the over-all forces and moments with angle of
attack for a number of specific cases, neither method yields satisfactory
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results in every instance. The reasons for the failure of the approxi-
mate methods can be traced to the fact that the actual distribution of
the forces differs significantly from those assumed. For the -model
tested in the present investigation, this is illustrated in figure 8 by
the comparisons of the normal-force distributions calculated by Allen's
and Kelly'!s methods with the distributions determined by integration of
the pressure-distribution data. The experimental data include the results
obtained for two values of the Reynolds number, as well as the data
obtained with the turbulence grid installed in the tunnel. From the com-
parisons it is evident that the distributions estimated on the basis of
either Allents or Kelly'!s method are not in good agreement with the
experimentally determined distributions for the complete angle-of-attack
range. Hence, although either method may yield fairly accurate estimates
of the total normal force, because of the failure to predict accurately
the distribution, neither method can be expected to yield the correct
pitching moment and center-of-pressure position.

Crossflow-drag-coefficient distributions.- It is believed that the
major source of error in the loadings calculated with the approximate
methods is the inadequate estimates of the forces resulting from flow
separation. With the assumption that the potential-flow forces are cor-
rectly predicted with theory and that the differences between experiment
and potential theory are attributable to flow separation effects, longi-
tudinal distributions of the effective? local crossflow drag coefficients
mey be obtained from the data. These distributions are compared with the
distributions assumed in Allen's and Kelly's methods in figure 9. It is
apparent that neither of the proposed methods contains the essential
features of the experimentel distributions. Although there are differ-
ences between the experimental distributions for different Reynolds
numbers and angles of attack (these will be discussed later), in each
case the effective crossflow drag coefficient starts near zero at the
apex, rises to a maximum value downstream from the juncture of the nose
with the cylindrical afterbody, and then decreases. In contrast with
this characteristic distribution, in Allen's method it is assumed that
the crossflow drag coefficient is constant along the length of the body.
It is apparent that Allen's method provides a first approximation to the
total additional cross force attributable to viscous effects, but that,
as was pointed out in reference 2, the centroid of this added loading is
too far forward, with the consequence that the actual center of pressure
is more rearward than the viscous theory indicates.

The distribution of crossflow drag coefficient computed with Kelly's
method is in qualitative agreement with experimental results in that it

“These coefficients have been termed "effective" crossflow drag
coefficients because all of the difference between potential theory and
experiment may not be attributed reasonably to viscous effects alone.
Particularly at the larger angles of attack, some of the difference must
be chargeable to fallure of the potential theory itself.
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starts at a low value near the apex and increases with distance down-~
stream. However, the experimental data reach a maximum value at 2 to 3
diameters downstream of the ogive-cylinder juncture and thereafter
decrease; whereas, Kelly's assumed distribution continues to increase for
the full length of the body. It is evident that the use of Kelly's
method, as compared with Allent®s, results in & rearward shift of the
center-of-pressure position and, for the angles of attack shown, an
increase in the total normal force. As will be shown subsequently, both
of these effects result in improved agreement with the experimental normsl
forces and pitching moments for the angle-of-attack range investigated.

Comparison of the experimental and assumed distribution of the cross-
flow drag coefficient at 20° angle of attack (fig. 9) shows that Kellyts
method assumes much too large a value beyond about 6 diameters downstream
from the nose vertex. This results in too large a value of normal force
and a center-of-pressure position too far aft. For bodies with lomger
cylindrical afterbodies or bodies of higher fineness ratio this over-
estimation of the cross force on the afterbody leads to large errors in
the estimated characteristics. It is, therefore, clear why Kelly!s method
yields good estimates of the over-all viscous effects for low fineness
ratio bodies for perhaps a relatively large angle-of-attack range but,
in general, does not yield good estimates for high fineness ratio bodies
at large angles of attack. A word of warning should be extended at this
point. Although it is stated in reference 3 that the method suggested
therein is applicable as long as the value of l/d tan o does not exceed
4.5, it appears from the load distribution data (fig. 8) that, at least
for the model tested in this investigation, large errors in the predicted
characteristics result if the method is used for values of 1/d tan «
grester than about 2.7 {1/ = 10, o = 15°).

Reynolds number effects.- For the body tested in the present investi-
gation, the Reynolds mmber effects on the normsl-force distribution and
on the distribution of the effective crossflow drag coefficient are shown
in figures 8 and 9, respectively. At 10° angle of attack, a large decrease
in the local cross force on the cylindrical afterbody accompanied an
increase in the Reynolds number from 0.13x10° to 0.39%x10° per inch. As
previcusly indicated in the discussion of .the pressure distribution data,
this reduction in cross force evidently resulits from the effects of
boundary-layer transition.

The reduction of the Reynolds number effect with increasing crossflow
Mach number (increasing angle of attack), shown by the experimental data,
is iIn accord with the expected trend based upon the analogy with the
crossflow around a circular cylinder. For the circular cylinder it is
known that the Reynolds number effects decrerse as the Mach number
increases. For the inclined body the Mach number normal to the axis of
the body was 0.34k at o = 10° and increased to 0.51 at a = 15°. The
data show thet, wheress a large decrease in the local crossflow drag coef-

ficient accompenied boundary-lsyer transition st a = 10°, for the same
free-stream Reynolds number change at o = 159, the decrease in the local
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crossflow drag coefficient was much less. In fact, further increases in
the effective Reynolds number through the use of the turbulence grid
resulted in little change in the crossflow drag coefficient.

These data show that the "independence principle,” whereby the cross-
Plow and axial flow are considered independent of each other, is not always
appliceble. The inadequacy of this principle for cases in which boundary-
layer transition occurs has been shown for low speed flow in reference 1l.
In the present case, if the independence principle were eppliceble, then
for each angle of attack, the local viscous crossflow drag coefficient
would be a function only of the crossflow Reynolds number. Thus, for each
angle of attack, there should be a consistent difference between the dis-
tributions for two different Reynolds numbers (fig. 9). However, the data
for 10° and 15° angle of attack show that the distributions for both
Reynolds numbers are about the same over the first few body diameters,
but for stations farther downstream, the values of crossflow drag coeffi-
cient are lower for the higher Reynolds number.

It is clear, therefore, that the local crossflow drag coefficient
depends on whether the boundery layer is leminar or turbulent and is- not
determined only by the crossflow Reynolds number and Mach number. Hence,
for an accurate estimate of the viscous cross-force distribution, it is
necessary to know the position of boundary-layer transition. It is
apparent that neither Allen's nor Kelly's method can account for the
observed Reynolds number effects, since each uses what might be termed a
universal loading curve to represent the longitudinal distribution of
croseflow drag coefficient, with Reynolds number effects taken into
account by simple multiples of these curves.

Correlation of crossflow drag distributions.- From figure 9 it is
observed that, except for the high Reynolds number data at o = 10°, the
axial distributions of the effective crossflow drag coefficient (cdc) at
each angle of attack are similar. This similarity suggests that the data
might be correlated by dividing the ordinate Cde by the cylinder steady-
state value cdc' (ref. 12) which would be expected far downstream on an
extended afterbody. However, as anticipated, it was found that only the
data evidencing little or no effects of Reynolds number could be approxi-
mately correlated to a single curve (cf. figs. 10(a) and 10(b)). Because
boundary-layer transition apparently occurred near the nose-cylinder
juncture for the model at 10° angle of attack and Re = 0.39xld8 per inch,
these data depart significently from the single correlation curve. For
angles of attack of 15° and 200, the deviations of the data from the cor-
relation curve are not large, even though Reynolds number variations are
present. It is therefore apparent that the single correlation curve
represents the data satisfactorily only for conditions in which either
the boundary layer is laminar or the Mach number normal to the body axis
is greater than about 0.5.

The development of a general correlation curve from which the vis-
cous cross-force distribution for bodies of revolution could be computed
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readily would provide the designer with a very powerful tool. Unfor-
tunately the correlation curve developed from the foregoing data may be
used only for bodies with geometrically similar nose shapes and with
cylindrical afterbodies. Although there are not sufficient data avail-
gble from which the effects of all the significant parameters of the
problem can be determined, an indication of the manner In which the
effects of nose fineness ratio may be taken into account in the correla-
tion is provided from figures T and 10 of the present report. The maxi-
mum positive value of cdc/cdc' and the maximmm negative value of the

theoretical potential-flow cross force occur at approximately the same
longitudinal position.® This fact suggests that the  effect of nose fine-
ness ratio on the longitudinal distribution of the effective viscous
cross force might be satisfactorily accounted for by using 1, (the dis-
tance from the apex of the body to the position of the minimum value of
the theoretical potential-flow cross force) as the unit of length rather
than simply the distance in body diameters as used in figure 10. Accord-
ingly, the correlation curve has been replotted in figure 11 for compari-
son with similar data for a fineness ratio 5.75 ogive plus cylindrical
afterbody (ref. 13).6 It is evident that a satisfactory correlation
results.

Although the correlations obtained with these data bave only limited
applicability, it is hoped that they will provide a suitsble framework
for further correlations when additional data become available., It should
be noted that ip is a function of both nose fineness ratio and free-
stream Mach number and might, therefore, provide a correlation with
reapect to the Mach number effects for a given body.

Normal-Force and Pitching-Moment Characteristics

Normal-force, pitching-moment, and center-of-pressure characteris-
tics obtained by graphical integration of the experimental normal-force
distributions of figure 8 are presented in figures 12 and 13. A con-
siderable reduction in normal force and a forward shift of the center-
of-pressure position accompanied the increase in Reynolds number at
a = 10°, Similar changes, although of reduced magnitude, occurred at
a = 15° and o = 20°. These experimental characteristics are compared
with those predicted by the semiempirical methods of Allen (ref. 1) and
Kelly (ref. 3). Also included for reference are the characteristics

SThis is, of course, not unexpected, since the correlation curves
were derived through the use of the theoretical potential cross-force
distributions.

SThe data of reference 13 were also obtained from the Ames 1- by
3-foot supersonic wind tunnel No. 1 at the same Mach number of 1.98.
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predicted with potential theories alone (refs. 7 and 9) and with the
correlation curve (fig. 11) according to the procedure outlined in the
Appendix of this report. In the application of Allen's method, the
steady-state values of crossflow drag coefficient (cdc') are taken as

functions of the crossflow Reynolds numbers and crossflow Mach numbers
and, hence, vary with angle of attack. In the application of Kelly's
method, cq,' is taken as 1.2 or 0.35, depending on whether the boundary
layer is laminar or turbulent. These comparisons show that none of the
methods used can be considered satisfactory for all of the test condi-
tions. For the cases in which the boundary layer is known to be laminar,
that is the tests for Re = O.l3x106 per inch st a's of 10° and 159, the
values predicted with Kelly's method and with the correlation curve are
both in reasonably good agreement with the experimental data. For the
remaining experimental data the boundary layer was turbulent over at
least a part of the body. If the method suggested by Kelly is used, with
his value of cdc' = 0.35 for a turbulent boundary layer, both the normal

force and pitching moment are grossly underestimated at the higher angles
of attack.

CONCLUDING REMARKS

A study of the effects of wviscosity on the normal-force distributions
for an ogive-cylinder body of revolution of fineness ratio 10 has been
conducted. The free-stream Mach number was 1.98. The angle-of-attack
range was 0° to 20°, and the Reynolds numbers, based on body diameter,
were 0.15x10° and 0.45x10%. A Reynolds number effectively higher than
O.ll-'jxlo6 was obtained by using a ‘turbulence inducing grid in the entrance
to the wind-tunnel nozzle.

The experimental date show that, insofar as the viscous cross-force
distribution on an inclined body is concerned, if transition of the
boundary layer occurs, the crossflow cannot be considered to be independ-
ent of the axial flow for crossflow Mach numbers less than ebout 0.6.
This is true, in spite of the fact that the crossflow Reynolds number may
be much lower than that at which transition of the crossflow boundary
layer would be expected. Upstream of the transition point the crossflow
characteristics are those associated with a laminar boundary layer, while
downstream the crossflow charecteristics approach those assoclated with
a turbulent boundary layer.

The distributions of viscous crossflow drag coefficients, determined
from the differences between the experimentally determined normal-force
distributions and the distributions predicted with potential-flow theory,
differ considerably from the distributions assumed in either of the
methods which have been proposed for estimating the effects of viscosity
on the forces and moments of inclined bodies of revolution (Allen,
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NACA RM A9I26 and Kelly, NOTS TM-998). A correlation curve for the
longitudinal distribution of the crossflow drag coefficient for laminar
boundary-layer flow was developed, based upon the assumption that the
distribution depended only upon the body shape. It is believed that use
of this correlation curve for the viscous cross-force contribution in
conjunction with first-order linear theory for the potential cross force
provides a satisfactory method for estimating the normal-force and
pitching-moment characteristics for similarly shaped bodies of revolution
with laminar boundary-layer flow. Additional study is required to deter-
mine the Mach number range for which the correletion curve is applicaeble.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 20, 195k
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APPENDITX

PROCEDURE FOR USE OF THE CORRELATION CURVE IN COMPUTING

NORMAL-FORCE AND PITCHING-MOMENT COEFFICIENTS

A simple procedure by which the aerodynamic characteristics of bodies
similar to that studied in the present investigation may be computed is
sumarized in the following steps:

(1) Compute potential-flow distribution (c,:lp vs. x) using Van Dyke's
"hybrid" or Tsien's potential theory.

(2) Determine 1y, the axial distance from the vertex to the "x"
station at which Cnp is a minimum according to potential
theory.

(3) For various "x" stations, determine the corresponding values
of cdc/cdc‘ using figure 11.

(4) Por values of M, sin a, determine the corresponding values of
cdc' using reference 12.

(5) Compute the viscous components of the total normal-force and
pitching-moment coefficients by graphically solving the

equations,
cg
c
cq ') ax
c

2 cg,’ sina Zr
ch = A

2 cg.! sin®a )2 (cd )
3 c c _
Coy = e \[; r ca (¥m - x) ax

(6) Compute the potential components of the total normal-force
and pitching-moment coefficients by graphically integrating
the cn, distributions of step (1).

1
cN'p:‘_[ cnpdx

1 f t
- - dax
cmp a J cnp (xm x)
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(7) The total normal-force and pitching-moment coefficients are
then obtalned by direct addition of the viscous and potential
components, that is,

Cy = O, + Cny

Cu = Cmyy + Cmy
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Figure 2.- Circumferentiel pressure distributions over top half of model;
o = 15°, Re = 0.39x10% per inch, and My = 1.98.
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